Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus
نویسندگان
چکیده
An important problem in the study of the mammalian visual system is whether functionally different retinal ganglion cell types are anatomically segregated further up along the central visual pathway. It was previously demonstrated that, in a New World diurnal monkey (marmoset), the neurones carrying signals from the short-wavelength-sensitive (S) cones [blue-yellow (B/Y)-opponent cells] are predominantly located in the koniocellular layers of the dorsal lateral geniculate nucleus (LGN), whereas the red-green (R/G)-opponent cells carrying signals from the medium- and long-wavelength-sensitive cones are segregated in the parvocellular layers. Here, we used extracellular single-unit recordings followed by histological reconstruction to investigate the distribution of color-selective cells in the LGN of the macaque, an Old World diurnal monkey. Cells were classified using cone-isolating stimuli to identify their cone inputs. Our results indicate that the majority of cells carrying signals from S-cones are located either in the koniocellular layers or in the 'koniocellular bridges' that fully or partially span the parvocellular layers. By contrast, the R/G-opponent cells are located in the parvocellular layers. We conclude that anatomical segregation of B/Y- and R/G-opponent afferent signals for color vision is common to the LGNs of New World and Old World diurnal monkeys.
منابع مشابه
Segregation of short-wavelength sensitive (“blue”) cone signals among neurons in the lateral geniculate nucleus and striate cortex of marmosets
We measured functional input from short-wavelength selective (S) cones to neurons in the dorsal lateral geniculate nucleus (LGN) and striate cortex (area V1) in anaesthetized marmosets. We found that most magnocellular (MC) and parvocellular (PC) cells receive very little (<5%) functional input from S cones, whereas blue-on cells of the koniocellular (KC) pathway receive dominant input from S c...
متن کاملS Cone Contributions to the Magnocellular Visual Pathway in Macaque Monkey
The magnocellular visual pathway is believed to receive input from long (L) and middle (M), but not short (S), wavelength-sensitive cones. Recording from neurons in magnocellular layers of lateral geniculate nucleus (LGN) in macaque monkeys, we found that magnocellular neurons were unequivocally responsive to S cone-isolating stimuli. A quantitative analysis suggests that S cones provided about...
متن کاملColor signals in the primary visual cortex of marmosets.
This study concerns the input from short-wavelength sensitive (S) cone photoreceptors to the primary visual cortex (striate cortex, Brodmann area 17, area V1) in marmosets. Signals from S-cones are thought to reach V1 by way of the koniocellular layers of the dorsal lateral geniculate nucleus. However, it is not known whether the S-cone afferent signals cause selective activation of cytochrome ...
متن کاملMacaque retina contains an S-cone OFF midget pathway.
Psychophysical results suggest that the primate visual system is equally sensitive to both the onset and offset of short-wavelength light and that these responses are carried by separate pathways. However, physiological studies of cells in the retina and lateral geniculate nucleus find far fewer OFF-center than ON-center cells whose receptive-field centers are driven by short-wavelength-sensiti...
متن کاملReceptive field properties of color opponent neurons in the cat lateral geniculate nucleus.
Most nonprimate mammals possess dichromatic ("red-green color blind") color vision based on short-wavelength-sensitive (S) and medium/long-wavelength-sensitive (ML) cone photoreceptor classes. However, the neural pathways carrying signals underlying the primitive "blue-yellow" axis of color vision in nonprimate mammals are largely unexplored. Here, we have characterized a population of color op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 30 شماره
صفحات -
تاریخ انتشار 2009